
Available online at www.sciencedirect.com
Tetrahedron Letters 49 (2008) 2552–2554
First asymmetric total synthesis of (+)-curcutetraol
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Abstract

The first asymmetric total synthesis of (+)-curcutetraol, a marine phenolic bisabolane-type sesquiterpene, was achieved in eight steps
in ca. 50% overall yield. The chiral tertiary benzylic alcohol moiety in the o-position of a phenol was constructed in high optical yield
(99% ee) by an asymmetric synthesis using a chiral aminal, (2R,5S)-2-methoxycarbonyl-3-phenyl-1,3-diazabicyclo[3.3.0]octane.
� 2008 Elsevier Ltd. All rights reserved.
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Many phenolic sesquiterpenoids of the bisabolane
family have been isolated from both terrestrial and marine
organisms.1 In spite of their rather simple structures, they
often display characteristic biological activities.1,2

(+)-Curcutetraol (1), isolated from the bacterium CNH-
741 and the fungus CNC-979 by Lindel and co-workers in
2005, is a phenolic bisabolane-type sesquiterpene with a
tertiary benzylic alcohol moiety as a single stereogenic cen-
ter (Fig. 1).3 The structure of (+)-1 was determined on the
basis of an extensive NMR spectroscopic analysis, and its
absolute configuration was proposed to be S by the com-
parison of its experimental CD spectrum with the calcu-
lated one. To date, it is the most polar member of the
phenolic bisabolane sesquiterpenoids with its four hydroxy
groups and it is the first bisabolane sesquiterpenoid with a
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Fig. 1. Structure of (+)-curcutetraol (1).
tertiary benzylic alcohol moiety in the o-position of a
phenol isolated from the marine environment. Although
Lindel and co-workers have reported a total synthesis of
racemic curcutetraol at the same time in seven steps in a
low overall yield, there is no report on the asymmetric syn-
thesis of (+)-1 to the best of our knowledge. Herein, we
report the first asymmetric total synthesis of (+)-1, apply-
ing an asymmetric synthesis of an a-hydroxy aldehyde
using a chiral aminal, (2R,5S)-2-methoxycarbonyl-3-
phenyl-1,3-diazabicyclo[3.3.0]octane (2).4

Our synthetic plan for the synthesis of (+)-1 is shown in
Scheme 1. We envisaged that (R)-a-hydroxy aldehyde 4

could be converted to the target compound (+)-1 via epox-
ide 3. (R)-Configuration of 4 should be constructed by the
stereoselective reaction of an acetyl aminal, (2R,5S)-2-
acetyl-3-phenyl-1,3-diazabicyclo[3.3.0]octane (6), and aryl
Grignard reagent 5 based on the stereochemical course of
the reaction.4

The synthetic route of (+)-curcutetraol (1) is summa-
rized in Scheme 2. Acetyl aminal 6 was obtained in 88%
yield by the reaction of methoxycarbonyl aminal 2 and
MeMgBr in the presence of MgCl2 after examinations of
the reaction conditions in detail (THF, �78 �C, 15 min).4

Considering the lability of tertiary benzylic alcohol moi-
ety at o-position of phenol under acidic conditions,5 silyl
ethers (triethylsilyl (TES), t-butyldimethylsilyl (TBDMS),
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Scheme 1. Retrosynthetic analysis of (+)-curcutetraol (1).
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or triisopropylsilyl (TIPS) ether) or trimethylsilylethoxy-
methyl (SEM) ether, which could be easily cleaved under
mild conditions by fluoride ion, were chosen as protective
groups of the hydroxy groups of Grignard reagent 5.
Among those protected 2-bromo-5-hydroxymethylphenol,6

the corresponding Grignard reagent was successfully pre-
pared only from bis-SEM ether by using activated magne-
sium turnings in the presence of 1,2-dibromoethane. (�)-2-
Hydroxy-2-[2-(2-trimethylsilylethoxymethoxy)-4-(2-trimeth-
ylsilylethoxymethoxymethyl)phenyl]propanal (4a) (½a�29

D

�61.8 (c 1.0, CHCl3)), a key intermediate for a synthesis
of (+)-1, was obtained in 82% yield by the reaction of
acetyl aminal 6 and Grignard reagent 5a (THF, �78 �C,
1 h) followed by the hydrolysis of the resulting hydroxy
aminal 7 under mild acidic conditions (2% aq HCl, Et2O,
0 �C, overnight). Reduction of 4a with sodium borohydride
(EtOH, rt, 30 min) gave (�)-2-[2-(2-trimethylsilylethoxy-
methoxy)-4-(2-trimethylsilylethoxymethoxymethyl)phenyl]-
propane-1,2-diol (8) (½a�25

D �3.1 (c 1.0, CHCl3)) in 83%
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Scheme 2. Reagents and conditions: (a) MgCl2, THF, reflux, 1 h, then MeMgB
ovn, 82% (from 6); (d) NaBH4, EtOH, rt, 30 min, 83%; (e) TsCl, pyridine, rt, 4
10, 52% and 11, 47%); (h) TBAF, MS 4 Å, THF, reflux, 4–5 h, 80% from 10
yield. The enantiomeric excess of 8 was 99% by chiral
HPLC analysis (Daicel Chiralcel OD-H (25 cm � 0.46 cm
i.d.); 254 nm UV detector; eluent, hexane/i-PrOH = 97/3;
flow rate, 0.5 mL/min; tR, 29.8 min, tS, 35.9 min)).7

Then, monotosylation of diol 8 (TsCl, pyridine, rt, 4.5 h)
and treatment of the monotosylate with NaH (THF, 0 �C,
overnight) afforded almost pure epoxide 3, which was used
in the next step without purification. Epoxide 3 was treated
with 3-methyl-3-triethylsiloxybutylmagnesium bromide
(9)8 in the presence of CuI (THF, �10 �C, 1 h) to afford
a mixture of bis-SEM ether 10 and mono-SEM ether 11,
which was separated by column chromatography (Silica
gel 60 N, spherical, neutral, 63–210 lm) to give 10 (½a�21

D

+6.1 (c 1.0, CHCl3)) and 11 (½a�20
D +3.55 (c 1.0, CHCl3))

in 52% and 47% yield from 8, respectively. Removal of
the SEM group and TES group of each 10 and 11 with
an excess amount of tetrabutylammonium fluoride (TBAF)
(MS 4 Å, THF, reflux, 4–5 h) gave (+)-1 in 80% and 87%
yield, respectively. Addition of 4 Å molecular sieves
(crushed, activated) was effective to reduce the formation
of the corresponding ethoxymethyl ether.9 The spectro-
scopic data (1H and 13C NMR, IR) of synthetic (+)-1 were
in good accordance with those reported for the natural
product,3 although the specific rotation of the synthetic
(+)-1 (½a�23

D +5.9 (c 0.74, MeOH)) was slightly larger than
that of natural (+)-1 (½a�20

D +5.24 (c 0.74, MeOH)).10

In conclusion, the first asymmetric total synthesis of (+)-
curcutetraol (1) was accomplished in eight steps with ca.
50% overall yield. The chiral tertiary benzylic alcohol moi-
ety in the o-position of a phenol was constructed in high
optical yield (99% ee) by an asymmetric synthesis of a-
hydroxy aldehyde 4a, having a chiral quaternary center,
starting from easily available chiral methoxycarbonyl
aminal 2. Although the absolute configurations of 4a and
(+)-1 have not been determined directly, it is reasonable
to assume that the absolute configuration of (+)-1 is S by
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analogy to results reported previously.4 The synthetic route
developed here can be applied to the synthesis of the ana-
logs and other related natural products. Further synthetic
studies are now in progress.
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